Главная Контакты Добавить в избранное Авторы Вопросы и ответы
,

УДК 519.714

СИНТЕЗ ОПТИМАЛЬНОГО ЗАКОНА УПРАВЛЕНИЯ БОЛЬШОЙ СИСТЕМОЙ НА ОСНОВЕ КОМПОЗИЦИИ  ЛОКАЛЬНЫХ ОПТИМАЛЬНЫХ РЕШЕНИЙ

Балтовский А.А.

Введение. Рыночная экономика в Украине требует новых подходов к управлению: на первый план выходят экономические, рыночные критерии эффективности. Научно-технический прогресс и динамика внешней среды заставляют современные производственные предприятия трансформироваться в более сложные системы, для которых необходимы новые методы управления. Усиление рыночной ориентации предприятий, резкие изменения внешней среды вызывают необходимость разработки конкурентоспособных систем управления, призванных вырабатывать комплексные управленческие решения, а следовательно и более эффективных подходов и алгоритмов решения задач большой размерности.

Работа выполнялась согласно государственной научно-технической программы 6.22 – перспективные информационные технологии и системы планы научной и научно-технической деятельности Одесского ордена Ленина института Сухопутных войск на 2004 год, соответственно к тематике научно-исследовательских работ.

Анализ последних исследований.В настоящее время одним из основных и наиболее эффективных подходов к решению задач управления большой размерности является декомпозиция [1,2]. Этот подход объединяет группу методов, основанных на разложении исходной задачи большой размерности на подзадачи, каждая из которых существенно проще исходной и решается независимо от других. Связь между отдельными подзадачами осуществляется с помощью «координирующей» задачи, которая тоже проще исходной. Для этого задачу управления приводят к виду, удовлетворяющему требованиям декомпозируемости, основными из которых [3,4] являются: аддитивность (сепарабельность) целевой функции; блочный характер ограничений; наличие блочных связей. Однако при решении практических задач синтеза оптимального управления большой размерности зачастую сложно удовлетворить перечисленным требованиям. Например, качество работы производственной системы может оцениваться критерием весьма общего типа, который может быть несепарабельным по отношению к задачам управления отдельными подсистемами. Поэтому при проведении исходной задачи управления к виду, удовлетворяющему требованиям декомпозируемости, неизбежны как различные упрощения, аппроксимации, так и различные варианты разбиения задачи на локальные подзадачи, т.е. блоков ограничений и межблочных связей. Все эти факторы влияют как на качество решения, так и на сложность расчетов при поиске оптимального решения.

Ввиду отсутствия до настоящего времени способов качественной оценки влияния перечисленных факторов на качество решения представляется актуальным разработка такого способа решения задачи большой размерности, который бы оставлял определенную свободу в выборе структуры локальных задач, а также удовлетворяющего и оценивающего влияние различных упрощений на качество решений.

Из анализа литературных источников [5-10] следует, что приемлемые численные методы решения нелинейных задач оптимизации связаны со значительными затратами машинного времени и памяти, а использование линеаризации приводит к потерям качества управления. Поэтому целесообразно, чтобы разрабатываемый новый метод решения задачи сохранял её нелинейный характер, а оптимальное управление определялось в рамках децентрализованной вычислительной структуры.

Объектом исследования являются алгоритмы решения задач управления большой размерности.

Предметом исследований является разработка подхода, основанного на идее эквивалентности или квазиэквивалентности исходной задачи большой размерности и соответствующей блочной декомпозиционной задачи.

Научная задача состоит в разработке алгоритмов, использование которых обеспечивало бы оптимальное управление в рамках децентрализованной структуры, без необходимости итерационного обмена информацией между уровнями управления.

Целью работы является разработка и дополнение элементов прикладной теории и проблемно-ориентированного инструментария оптимизации задач управления большой размерности.

Научная новизна состоит в разработке подхода к синтезу алгоритмов оптимизации задач управления большой размерности в рамках децентрализованной вычислительной структуры, при которой отпадает необходимость в организации итерационного процесса между уровнями управления.

Основной материал. Пусть, рассматриваемая задача оптимального управления непрерывной динамической системой, определяется дифференциальным уравнением

                                              (1)

по критерию

                                                     (2)

 при

где - n – мерный вектор управления; - m – мерный вектор управления;  - n – мерная функция, составляющая которой непрерывно дифференцируемы относительно аргументов;  - выпуклая, дифференцируемая скалярная функция; - заданные соответственно начальный и конечный момент времени.

С целью представления объекта управления (1) в виде ряда взаимодействующих подсистем разложим (1) в ряд Тейлора относительно точки равновесия

где  ,

или

                                              (3)

В выражении (3) А и В представляют собой блочно-диагональные части матриц и соответственно, с блоками  и .

,

а и - недиагональные части и соответственно.

Введением вектора взаимосвязи  таким образом, что задаваемая в i – тая составляющая определяется выражением

,                                                       (4)

можно записать уравнение i – й подсистемы

где - - мерный вектор управления; - - мерный вектор состояния; - n – мерный вектор взаимосвязи.

Предлагаемый декомпозиционный способ синтеза оптимальных управлений состоит в следующем. Составляющую подсистему

и учитывающую взаимосвязь с другими подсистемами, назовем изолированной.

Композиция i – ых i = 1,2,…, Р подсистем представляет модель

                                                (5)

где  и - блочно – диагональные матрицы с блоками  и  соответственно.

Сформулируем критерий

,                                           (6)

где - положительно – полуопределенная блочно – диагональная матрица

с блоками ; - положительно – определенная блочно – диагональная матрица

с блоками , - оптимальное управление.

Матрицы  и  определим из условия квазиэквивалентности задач (1) – (2) и (5) – (6), которое имеет вид

,

здесь , ,

где .

Для определения элементов матриц, имеем систему алгебраических уравнений

.                                            (7)

После решения уравнения (7) имеем Р независимых задач оптимизации в связи с блочно – диагональной структурой матриц

,

.

Локальное оптимальное управление имеет вид

,                                                          (8)

, удовлетворяет линейному дифференциальному уравнению [8].

.                                   (9)

Глобальное решение является композицией оптимальных решений

 

.                                                    (10)

 

Выводы.Таким образом, задача синтеза оптимального управления для исходной задачи большой размерности (1) – (2) сводиться к следующему: формулировка локальных задач оптимизации (5) – (6); определение параметров локальных задач по формулам (3) и (6); решение локальных задач согласно (8) – (9); композиция локальных решений (10).

Потери качества при оптимальном подходе к синтезу приближенно оптимальных управлений можно оценить по формулам, предложенным в [8].

 

The new approach to problem solving of control, founded on idea of equivalence an initial problem of large dimension and conforming unitized offcomposite of a problem is offered.

 

1.                  Месарович М., Мако Д., Такахара И. Теория иерархических многоуровневых систем. – М.: Мир, 1973.

2.                  Аэсдон Л.С. Оптимизация больших систем. – М.: Мир, 1975.

3.                  Альбрехт Э.Г. Об оптимальной стабилизации нелинейных систем. – Прикладная математика и механика, 1961, т. 25.

4.                  Живоглядов В.П., Кривенко В.А. Способ декомпозиции задач управления большой размерности с несепарабельным критерием качества. Тезисы II Всесоюзной межвузовской конференции «Математическое, алгоритмическое и техническое обеспечение АСУ ТП». Ташкент, 1980.

5.                  Hassan Mohamed, Sinqh Madan G. The optimization for non – linear systemsusinq a new two level method. “Automatica”, 1976, 12, №4.

6.                  Mahmoud M.S. Dynamic multilevel optimization for a class of non – linear systems, “Int. J. Control”, 1979, 30, №6.

7.                  Кривенко В.А. Квазиэквивалентное преобразование оптимизационных моделей в задачах синтеза алгоритмов управления. – В кн.: Адаптация и оптимизация в больших системах. – Фрунзе, 1985.

8.                  Кривенко В.А. Способ синтеза алгоритмов управления с использованием идеи модификации целевой функции. – Фрунзе, 1985.

9.                  Румянцев В.В. Об оптимальной стабилизации управляемых систем. – Прикладная математика и механика, 1970, вып. 3.

10.              Овезгельдыев А.О., Петров Э.Т., Петров К.Э. Синтез и идентификация моделей многофакторного оценивания и оптимизации. – К.: Наукова думка, 2002.

 

 

 

 





Ответы на вопросы [_Задать вопроос_]

Читайте также

 
Литвиненко В.И., Четырин С.П. Компенсация ошибок оператора в контуре управления следящей системы на основе синтезируемых вейвелет-сетей

Луцька Н.М. Синтез оптимальних регуляторів для систем автоматизації технологічних комплексів неперервного типу.

Кучеров Д.П. Алгоритм обучения субоптимальному по быстродействию управлению динамической системой второго порядка без нулевых полюсов

Тимченко В.Л. Формирование динамических принципов управления подвижным объектом на основе метода структурно ― переключаемых обратных связей

Рогальский Ф.Б. Информационная поддержка принятия решений при управлении социотехническими системами.

Погребняк И.Ф. Формализация проблемы управления организационными системами в условиях неопределенности

Кучеров Д.П., Василенко А.В., Иванов Б.П. Алгоритм адаптивного терминального управления динамической системой с элементом дифференцирования

Ходаков В.Е., Соколова Н.А. Координация взаимодействия подсистем в автоматизированных системах

Стопакевич А.А. Новые соотношения для синтеза цифровых оптимальных одномерных систем управления для объектов с запаздыванием.

Маломуж Т.В. Оптимальное управление на основе интеллектуальных систем

Кириллов О.Л., Якимчук Г.С. Оптимальное управление технологическим процессом заполнения слабопроводящими заряжающимися жидкостями (СПЗЖ) замкнутых объемов.

Червинський В.В., Бессараб В.І. Ієрархічна система оптимального управління установкою з газифікації вугілля методом напівкоксування з циркулюючим киплячим шаром

Хобин В.А. Повышение качества формирования смесей средствами интеллектуализации алгоритмов управления порционным дозированием

Подмогильный С.Н. , Бараненко Р.В. Информационная система территориального управления земельными ресурсами.

Оптимальное управление объектами и системами

Бойченко О.В. Оптимізація роботи інформаційно-телекомунікаційних систем спеціального призначення

Тимченко В.Л. Формирование динамических принципов управления подвижным объектом на основе метода структурно ― переключаемых обратных связей

Лебеденко Ю.О., Рудакова Г.В. Модель нечіткого виводу для оптимального управління перетворювачем частоти в системах автономного живлення

Ладанюк А.П., Кроніковський Д.О. Екстремальна адаптивна система з непараметричною ідентифікацією та багатопараметричним регулятором

Ладієва Л.Р., Дубік Р.М. Оптимальне керування процесом контактної мембранної дистиляції

Писаренко А.В., Дробот І.Ю. Алгоритм синтезу систем зі змінною структурою у ковзному режимі

Погребняк И.Ф. Формализация проблемы управления организационными системами в условиях неопределенности

Батюк С.Г., Олійник С.Ю. Методика оптимальної фільтрації даних температурного контролю турбогенераторів в умовах значних промислових перешкод.

Дорогов А.Ю., Лесных В.Ю., Раков И.В., Титов Г.С. Алгоритмы оптимального движения мобильных объектов по пересеченной местности и транспортной сети

Михайленко В.С., Ложечников В.Ф. Сравнительный анализ комплексного и нечеткого регуляторов при управлении многомерным объектом

Бакшанська Т.Д., Рижиков Ю.Г., Тодорцев Ю.К. Мінімізація токсичності продуктів згорання та втрат теплоти у топкових пристроях з рециркуляцією продуктів згорання на основі узагальненого критерію оптимізації

Луцька Н.М., Заєць Н.А., Ладанюк А.П. Синтез та порівняння багатовимірних регуляторів для колонної дифузійної установки цукрового заводу.

Корнієнко Б.Я., Снігур О.В. Оптимізація параметрів процесу зневоднення і гранулоутворення в апараті псевдозрідженого шару

Ладієва Л.Р., Зав'ялова Т.П. Оптимізація плівкового апарату роторного типу за максимальною продуктивністю

Лебеденко Ю.О. Оптимальне управління безпосереднім перетворювачем частоти за критерієм мінімізації негативного впливу на живильну мережу

Тарасюк В.П., Алдохіна А.С. Основні положення методики побудови оптимального розкладу управління обладнанням паралельних технологічних процесів на основі експертних оцінок.

Стопакевич А.А. Новые соотношения для синтеза цифровых оптимальных одномерных систем управления для объектов с запаздыванием.

Ладієва Л.Р.,. Жулинський О.А Оптимізація установки контактної мембранної дистиляції.

Батурінець Є. В., Пасенченко Ю. А. Управління матеріальними запасами з обмеженнями на складські приміщення

Смітюх Я.В., Кишенько В. Д. Оптимізація управління процесами брагоректифікації.

Рябкин Ю.В, Карнаух В.В. Квазиоптимальная обработка коротких радиоимпульсов в акустооптическом спектроанализаторе.

Песчанский А.И. Оптимальное техническое обслуживание двухкомпонентной параллельной системы с учетом наработки каждого элемента.

Лебеденко Ю.А. Исследование непосредственного преобразователя частоты с оптимальным управлением.

Исаев Е.А., Чернецкая И.Е., Завальнюк О.П. К вопросу принятия решений при оптимизации гранулирования рыбной муки в барабане.

Кириллов О.Л., Якимчук Г.С. Оптимальное управление технологическим процессом заполнения слабопроводящими заряжающимися жидкостями (СПЗЖ) замкнутых объемов.

Водічев В.А. Порівняльний аналіз швидкодії алгоритмів керування у системі оптимізації технологічного процесу металообробки.

Поливода О.В., Бражник А.М. Метод компенсации ошибок идентификации при оптимальном управлении

Марасанов В.В., Забитовская О.И., Щербина Е.В. Энтропийные методы оптимизации гравитационных моделей.

Луцька Н.М. Синтез оптимальних регуляторів для систем автоматизації технологічних комплексів неперервного типу.

Кондратенко Г. В., Кондратенко Ю. П., Мухортова К. В. Синтез нечетких регуляторов на основе объектно-ориентированных технологий.

Чернецкая И.Е., Исаев Е.А., Лебеденко Ю.А. Система автоматической оптимизации окомкования железорудного концентрата в условиях ЦГОКа

Червинський В.В., Бессараб В.І. Ієрархічна система оптимального управління установкою з газифікації вугілля методом напівкоксування з циркулюючим киплячим шаром

Усов А. В., Дубров К. А. Оптимизация  и управление термомеханическими процессами при получении феррокерамических изделий для отклоняющих систем

Кучеров Д.П. Алгоритм обучения субоптимальному по быстродействию управлению динамической системой второго порядка без нулевых полюсов

Ладанюк А.П., Луцька Н.М., Лобок О.П. Розробка багатовимірних оптимальних регуляторів для об'єктів одного класу.

Маломуж Т.В. Оптимальное управление на основе интеллектуальных систем

Марончук И.Е., Кучерук А.Д., Данилец Е.В., Ерохин С.Ю., Чорный И.В. Опти-мизация двухкоординатных позиционно-чувствительных фотоприемников.